
AI in Trading

Exploring Autonomous Trading Bots with
Machine Learning and Optimisation

Nirius McDade & Ernest Zalewski

Exeter Mathematics School - 2025

September 2024 - May 2025

Contents

1 Project Introduction 2
1.1 Historical Development . 2
1.2 Key Concepts in Algorithmic Trading 2
1.3 Current Relevance and Adoption 2
1.4 Existing Strategies and Limitations 3

1.4.1 Mean Reversion Strategies 3
1.4.2 Momentum and Trend-Following Strategies 3
1.4.3 Arbitrage Strategies . 4
1.4.4 General Limitations of Algorithmic Trading Strategies . . 4

2 The Problem 4
2.1 Proposed Solution . 5
2.2 Objectives . 5

3 Getting Started 6
3.1 Installation and Setup . 6

3.1.1 Creating the User Directory 6
3.1.2 Creating a Configuration File 7

3.2 Downloading Historical Data . 10
3.3 Creating and Evaluating a Strategy 10
3.4 Optimizing the Strategy with Hyperopt 13
3.5 Backtesting the Strategy . 14

3.5.1 Summary Metrics . 15
3.6 Analysis and Conclusion . 16

4 Code Appendix 16

1

1 Project Introduction

Algorithmic trading, often referred to as algo trading, involves the use of com-
puter programs and algorithms to execute financial market trades. It has fun-
damentally transformed the landscape of modern financial markets by improv-
ing execution efficiency, enabling high-speed trading, and reducing human error.
Over the past two decades, algorithmic trading has evolved from a niche strategy
used primarily by large institutional investors to a prevalent approach embraced
by hedge funds, proprietary trading firms, and retail investors alike.

1.1 Historical Development

The start of algorithmic trading can be traced back to the early 1970s with
the introduction of electronic communication networks (ECNs). These systems
allowed for direct electronic trading without the need for traditional brokers,
laying the groundwork for automation. The 1990s saw the emergence of more
sophisticated algorithms designed to optimise trade execution, such as volume-
weighted average price (VWAP) algorithms, which were particularly beneficial
for institutional investors managing large orders [Kissell and Glantz(2003)].

By the mid-2000s, advancements in computing power and data analysis ca-
pabilities enabled high-frequency trading (HFT). These strategies rely on exe-
cuting thousands of trades within fractions of a second, exploiting microsecond-
level market inefficiencies. Studies such as that by Aldridge [Aldridge(2013)]
have highlighted the significant role of HFT in increasing market liquidity and
reducing bid-ask spreads, although concerns regarding systemic risk persist.

1.2 Key Concepts in Algorithmic Trading

At its core, algorithmic trading combines finance, mathematics, and computer
science to implement strategies that leverage specific market conditions. Key
concepts include:

• Quantitative Analysis: Algorithms often rely on statistical models to
identify trading opportunities. These models range from simple moving
averages to complex machine learning frameworks [Avellaneda and Lee(2008)].

• Market Microstructure: Understanding the mechanics of order books,
price discovery, and liquidity is essential for effective algorithm design
[Hasbrouck(2007)].

• Risk Management: Automated strategies embed predefined risk thresh-
olds to mitigate exposure to volatile market conditions.

1.3 Current Relevance and Adoption

The adoption of algorithmic trading has grown exponentially, with estimates
suggesting that it now accounts for 70-80% of US equity trading volume. This

2

growth is driven by increased market accessibility and the proliferation of tools
that allow even retail traders to deploy algorithmic strategies. Platforms like
MetaTrader, NinjaTrader, and QuantConnect have lowered the barrier to entry,
enabling individuals with programming skills to compete in a space previously
dominated by institutional players.

Despite its widespread adoption, algo trading remains a controversial sub-
ject. Critics argue that strategies like HFT exacerbate market volatility and
create unfair advantages for those with superior technological infrastructure
[Kirilenko et al.(2017)Kirilenko, Kyle, Samadi, and Tuzun].

1.4 Existing Strategies and Limitations

Algorithmic trading has been extensively studied and implemented in financial
markets, with various strategies designed to exploit specific market behaviours.
Despite their potential, each strategy has inherent limitations that traders must
navigate. This section examines key strategies, their principles, and the chal-
lenges they face.

1.4.1 Mean Reversion Strategies

Mean reversion strategies operate on the principle that asset prices tend to revert
to their historical average over time. These strategies use technical indicators
such as Bollinger Bands and moving averages to identify overbought or oversold
conditions, which signal potential price reversals.

Poterba and Summers (1988) provide foundational evidence for mean re-
version, demonstrating that stock prices often exhibit this behaviour over ex-
tended periods. However, the practical application of mean reversion strategies
is fraught with challenges. For instance, in volatile or trending markets, prices
can deviate from their mean for prolonged durations, leading to substantial
drawdowns. Furthermore, the assumption that past patterns will persist in the
future can be undermined by structural market changes or unforeseen economic
events.

1.4.2 Momentum and Trend-Following Strategies

Momentum and trend-following strategies seek to capitalise on sustained price
movements in a particular direction. These strategies are predicated on the be-
lief that assets exhibiting upward (or downward) momentum will continue their
trajectory. Jegadeesh and Titman (1993) provide compelling empirical evidence
for momentum effects in stock returns, showing that stocks that perform well
over a 3–12 month period tend to continue outperforming [Jegadeesh and Titman(1993)].

Despite their widespread use, momentum strategies face limitations. In
range-bound markets, where prices oscillate without a clear trend, such strate-
gies are prone to frequent false signals, resulting in significant losses. Addition-
ally, momentum trading can amplify price volatility during periods of excessive
speculation, potentially exacerbating market instability.

3

1.4.3 Arbitrage Strategies

Arbitrage strategies exploit price inefficiencies between markets or related assets.
Statistical arbitrage, for instance, involves using quantitative methods to iden-
tify correlations between assets and predict their convergence. Avellaneda and
Lee (2010) highlight the mathematical models underpinning statistical arbitrage
and their practical applications in equities markets [Avellaneda and Lee(2008)].

While appealing in theory, arbitrage strategies face considerable practical
hurdles. The opportunities for arbitrage are typically short-lived and demand
advanced infrastructure for high-speed execution. Additionally, transaction
costs and diminishing inefficiencies in modern markets often erode the profitabil-
ity of such strategies. Misjudging the convergence of asset prices can further
result in unexpected losses, adding to the inherent risk.

1.4.4 General Limitations of Algorithmic Trading Strategies

Across all algorithmic strategies, certain universal limitations exist. Firstly,
backtesting—while invaluable—cannot fully replicate live market conditions,
particularly in terms of slippage and latency. Secondly, strategies relying on
historical data are inherently vulnerable to overfitting, which can result in poor
performance in unseen market scenarios. Finally, algorithmic trading systems
require constant monitoring and refinement to adapt to evolving market dy-
namics.

In summary, while existing strategies offer promising avenues for algorith-
mic trading, their limitations highlight the need for robust optimisation and
continuous evaluation. Understanding these constraints is critical for designing
trading bots that can navigate the complexities of financial markets effectively.

2 The Problem

Despite the rapid advancements in algorithmic trading, there remain signifi-
cant challenges in optimising trading strategies to maximise profitability and
minimise risk, particularly in the context of autonomous trading bots. Current
strategies, while effective in certain market conditions, often struggle to adapt
to the dynamic and highly volatile nature of financial markets, especially in the
cryptocurrency space.

One of the primary issues with existing strategies is their reliance on static
parameters, which fail to respond to changing market dynamics. This results
in suboptimal performance during periods of high volatility or when market
conditions shift unexpectedly. For example, mean reversion strategies can lead
to significant losses during trending markets, while momentum strategies may
fail in sideways markets.

Furthermore, backtesting and historical performance evaluations of algorith-
mic trading systems are frequently undermined by overfitting, poor risk man-
agement, and an inability to account for unforeseen market events. The lack of

4

continuous optimisation and adaptability in trading bots, as well as the diffi-
culty in accurately predicting market movements, necessitates the development
of more sophisticated models that integrate machine learning, optimisation tech-
niques, and dynamic risk management.

This project aims to address these gaps by developing an intelligent and
adaptive trading bot capable of performing robust decision-making under vary-
ing market conditions. The goal is to create a strategy that balances profitabil-
ity with risk mitigation, while continuously optimising itself based on historical
data, market conditions, and real-time feedback.

2.1 Proposed Solution

The proposed solution leverages the ‘freqtrade‘ library, a popular open-source
cryptocurrency trading bot framework, to develop a custom trading strategy
that can adapt to changing market conditions. The solution focuses on creating
an intelligent bot capable of dynamically adjusting its strategy based on market
signals, risk management rules, and performance feedback.

To achieve this, we will design a flexible trading strategy that maximises
profitability by identifying high-potential trading opportunities while minimiz-
ing risk through well-defined stop-loss and take-profit mechanisms. Addition-
ally, the bot will attempt to use machine learning techniques to continuously
improve its decision-making process based on historical data and real-time mar-
ket conditions. By integrating custom indicators and using backtesting and
optimisation frameworks like ‘hyperopt‘, the strategy will evolve to remain ef-
fective in various market environments, ensuring long-term success.

The bot will aim to:

• Maximise overall profit.

• Reduce drawdowns and exposure to risk.

• Adapt to volatile and uncertain market conditions.

• Optimise performance through continuous learning and parameter tuning.

The solution will also focus on ensuring that the bot can trade across multiple
cryptocurrency pairs, balancing the portfolio based on market signals, while
ensuring proper risk management and diversification.

2.2 Objectives

The main objectives of this project are as follows:

1. Develop a custom trading strategy using the ‘freqtrade‘ framework tailored
for cryptocurrency markets.

2. Optimise strategy parameters using the ‘hyperopt‘ library to fine-tune the
performance and minimise overfitting.

5

3. Backtest the strategy against historical data to evaluate its effectiveness
and refine it for live trading conditions.

4. Compare the performance of the developed strategy against benchmark
strategies to assess improvements in profitability and risk management.

5. Implement dynamic risk management mechanisms to minimise drawdown
and optimise the risk-to-reward ratio.

6. Enable the bot to adapt to different market conditions, ensuring that it
remains effective across various cryptocurrency pairs and market volatility
levels.

3 Getting Started

In order to complete this project, we used the freqtrade Python repository.
This is an extension for Python that allows us to create, analyze, and manage
trading bots. A trading bot is simply a program that autonomously performs
actions on an online market. By creating a custom trading strategy and applying
it to this Python package, we can develop programs that automatically trade
for us as long as the program is running.

3.1 Installation and Setup

To install freqtrade, you need to install TA-Lib first, a Python technical anal-
ysis library that allows us to create indicators from raw data. After installing
TA-Lib, I proceeded to install freqtrade along with its dependencies.

3.1.1 Creating the User Directory

Firstly, we need to set up freqtrade after installation. We start by creating a
folder to store our work. This is easily done by running the following command:

freqtrade create-userdir --userdir user_data

This command creates a working directory called user_data with the following
layout:

6

Figure 1: User Data Directory Layout

3.1.2 Creating a Configuration File

Next, we create a new configuration file using the following command:

freqtrade new-config --config user_data/config.json

This file determines key factors about our trading strategies. We modified the
default configuration file to suit our needs. Below is our updated configuration
file:

1 {

2 "$schema": "https://schema.freqtrade.io/schema.json",

3 "max_open_trades": 3,

4 "stake_currency": "USDT",

5 "stake_amount": "unlimited",

6 "tradable_balance_ratio": 0.99,

7 "fiat_display_currency": "USD",

8 "dry_run": true,

9 "dry_run_wallet": 1000,

10 "cancel_open_orders_on_exit": false,

11 "trading_mode": "futures",

12 "margin_mode": "isolated",

13 "unfilledtimeout": {

7

14 "entry": 10,

15 "exit": 10,

16 "exit_timeout_count": 0,

17 "unit": "minutes"

18 },

19 "entry_pricing": {

20 "price_side": "same",

21 "use_order_book": true,

22 "order_book_top": 1,

23 "price_last_balance": 0.0,

24 "check_depth_of_market": {

25 "enabled": false,

26 "bids_to_ask_delta": 1

27 }

28 },

29 "exit_pricing":{

30 "price_side": "same",

31 "use_order_book": true,

32 "order_book_top": 1

33 },

34 "exchange": {

35 "name": "binance",

36 "key": "",

37 "secret": "",

38 "ccxt_config": {},

39 "ccxt_async_config": {},

40 "pair_whitelist": [

41 "BTC/USDT:USDT",

42 "ETH/USDT:USDT",

43 "XRP/USDT:USDT",

44 "SOL/USDT:USDT",

45 "DOGE/USDT:USDT",

46 "ADA/USDT:USDT"

47],

48 "pair_blacklist": [

49 "BNB/.*"

50]

51 },

52 "pairlists": [

53 {

54 "method": "StaticPairList",

55 "pairs": [

56 "BTC/USDT:USDT",

57 "ETH/USDT:USDT",

58 "XRP/USDT:USDT",

59 "SOL/USDT:USDT",

8

60 "DOGE/USDT:USDT",

61 "ADA/USDT:USDT"

62]

63 }

64],

65 "telegram": {

66 "enabled": false,

67 "token": "",

68 "chat_id": ""

69 },

70 "api_server": {

71 "enabled": true,

72 "listen_ip_address": "127.0.0.1",

73 "listen_port": 8080,

74 "verbosity": "error",

75 "enable_openapi": false,

76 "jwt_secret_key": "***",

77 "ws_token": "***",

78 "CORS_origins": [],

79 "username": "***",

80 "password": "***"

81 },

82 "bot_name": "freqtrade",

83 "initial_state": "running",

84 "force_entry_enable": false,

85 "internals": {

86 "process_throttle_secs": 5

87 }

88 }

Most notably:

• trading_mode is set to futures as this allows the creation of strategies
that can execute both long and short trades. This setting changes the pair
list to include futures instead of typical spot pairs.

• The fiat currency is set to USD for ease of use, as the trading pairs use
USDT, which is pegged to the dollar instead of the pound.

• tradable_balance_ratio is set to 0.99 instead of 1 to leave some balance
for fees and commissions with the Binance brokerage.

• api_server enables visualization of the trading bot’s actions by plotting
its trades on the respective trading pair’s graph. This can be accessed via
the IP address listed in the config file through a web browser.

9

• Pairs were selected based on highest market cap, ensuring they are well-
established and less risky compared to smaller market cap pairs, which
are more susceptible to extreme price shifts or low liquidity.

3.2 Downloading Historical Data

After configuring freqtrade, we downloaded historical data to optimize our
strategy using hyperopt, the optimization module in freqtrade. Data is down-
loaded using the following command:

freqtrade download-data --config config.json --timerange 20200101-

--timeframes 1m 5m 15m 30m 4h 8h

This command retrieves all the pairs specified in our config file and collects price
history for the indicated timeframes from January 1, 2020, to the most recent
date (December 20, 2024, in this case). This allows us to test strategies across
multiple timeframes and accurately replicate historical price action.

3.3 Creating and Evaluating a Strategy

We created a simple strategy to test and evaluate. I arbitrarily selected two
indicators—the RSI and MACD—and modified the sample strategy from the
freqtrade documentation to develop this custom strategy.

1 import numpy as np

2 import pandas as pd

3 from pandas import DataFrame

4 from freqtrade.strategy import IStrategy, IntParameter,

BooleanParameter↪→

5 import talib.abstract as ta

6

7 class sample_strategy(IStrategy):

8 INTERFACE_VERSION = 3

9

10 can_short: bool = True

11

12 minimal_roi = {

13 "0": 0.1,

14 }

15

16 stoploss = -0.1

17

18 timeframe = '30m'

19

20 process_only_new_candles = True

10

21

22 use_exit_signal = True

23 exit_profit_only = False

24 ignore_roi_if_entry_signal = False

25

26 startup_candle_count: int = 200

27

28 buy_rsi = IntParameter(20, 80, default=30, space='buy',

optimize=True)↪→

29 sell_rsi = IntParameter(20, 80, default=70, space='sell',

optimize=True)↪→

30 short_rsi = IntParameter(20, 80, default=80, space='sell',

optimize=True)↪→

31 exit_short_rsi = IntParameter(20, 80, default=40,

space='buy', optimize=True)↪→

32

33 use_rsi = BooleanParameter(default=True, space='buy',

optimize=True)↪→

34 use_macd = BooleanParameter(default=True, space='buy',

optimize=True)↪→

35

36 max_open_trades = 3

37

38 def populate_indicators(self, dataframe: DataFrame,

metadata: dict) -> DataFrame:↪→

39 if self.use_rsi.value:

40 dataframe['rsi'] = ta.RSI(dataframe)

41 if self.use_macd.value:

42 macd = ta.MACD(dataframe)

43 dataframe['macd'] = macd['macd']

44 dataframe['macdsignal'] = macd['macdsignal']

45 dataframe['macdhist'] = macd['macdhist']

46 return dataframe

47

48 def populate_entry_trend(self, dataframe: DataFrame,

metadata: dict) -> DataFrame:↪→

49 conditions = []

50

51 if self.use_rsi.value:

52 conditions.append(dataframe['rsi'] <

self.buy_rsi.value)↪→

53 if self.use_macd.value and 'macd' in dataframe and

'macdsignal' in dataframe:↪→

54 conditions.append(dataframe['macd'] >

dataframe['macdsignal'])↪→

55

11

56 dataframe.loc[

57 np.all(conditions, axis=0),

58 'enter_long'

59] = 1

60

61 conditions = []

62

63 if self.use_rsi.value:

64 conditions.append(dataframe['rsi'] >

self.short_rsi.value)↪→

65 if self.use_macd.value and 'macd' in dataframe and

'macdsignal' in dataframe:↪→

66 conditions.append(dataframe['macd'] <

dataframe['macdsignal'])↪→

67

68 dataframe.loc[

69 np.all(conditions, axis=0),

70 'enter_short'

71] = 1

72

73 return dataframe

74

75 def populate_exit_trend(self, dataframe: DataFrame,

metadata: dict) -> DataFrame:↪→

76 dataframe.loc[

77 dataframe['rsi'] > self.sell_rsi.value,

78 'exit_long'

79] = 1

80

81 dataframe.loc[

82 dataframe['rsi'] < self.exit_short_rsi.value,

83 'exit_short'

84] = 1

85

86 return dataframe

This Python code defines a trading strategy class named SampleStrategy,
which inherits from IStrategy, a base class provided by the freqtrade frame-
work. The populate_indicators method calculates these indicators and adds
them to the dataframe. The populate_entry_trend method defines the condi-
tions for entering long and short positions based on the values of these indicators.
For example:

• A long position is entered if the RSI is below a certain threshold and the
MACD is above its signal line.

12

• A short position is entered if the RSI is above a certain threshold and the
MACD is below its signal line.

The populate_exit_trend method defines the conditions for exiting long and
short positions based on the RSI values. The class is designed to be opti-
mized using freqtrade’s hyperopt optimization, with parameters like buy_rsi,
sell_rsi, short_rsi, and exit_short_rsi being adjustable within specified
ranges.

3.4 Optimizing the Strategy with Hyperopt

After creating the strategy, I optimized it using hyperopt to obtain better values
for the parameters. Hyperopt is an optimization framework used to find the best
hyperparameters for machine learning models and trading strategies. It employs
a Bayesian optimization approach, which is a probabilistic model-based method
for finding the minimum or maximum of an objective function.
In the context of freqtrade, hyperopt uses a machine learning regressor algo-
rithm (ExtraTreesRegressor) to model the relationship between hyperparame-
ters and the performance of the trading strategy. The process involves iteratively
selecting hyperparameter combinations, evaluating their performance, and up-
dating the model to better predict which combinations are likely to yield the
best results. This approach efficiently narrows down the search space by focus-
ing on promising regions, making it far more efficient than a standard linear
search.

Using hyperopt requires the following command:

freqtrade hyperopt --strategy SampleStrategy --timerange 20240101-

--timeframe 30m --timeframe-detail 1m --hyperopt-loss SharpeHyperOptLoss

Important Notes:

• timeframe-detail is set to 1 minute to ensure the optimization and back-
testing are adequately accurate by accounting for intra-candle price move-
ment. This prevents the model from only seeing one low and one high per
candle, which could lead to misleadingly perfect entries.

The illustration below demonstrates the dangers of a high timeframe-detail:

13

Figure 2: Comparison of Timeframe Detail Effects on Strategy Performance

After running the hyperoptimization for 100 epochs (note: most strategies
should use 500+ epochs), the profit from the strategy increased from 12% to
over 50% in one year.

Figure 3: Hyperopt Optimization Results for Sample Strategy

3.5 Backtesting the Strategy

A further analysis of this strategy can be seen when using the backtest function
for the same time range:

Enter Tag Exit Reason Trades Avg Profit % Tot Profit USDT Tot Profit % Avg Duration Win Draw Loss Win%
(”, ’roi’) 757 0.92 2654.178 265.42 16:38:00 436 / 18 / 303 / 57.6
(”, ’forceexit

′) 3 -4.69 -72.486 -7.25 4 days, 17:10:00 0 / 0 / 3 / 0
(”, ’exitsignal

′) 145 -0.66 -351.637 -35.16 3 days, 1:54:00 91 / 0 / 54 / 62.8

14

(”, ’stoploss
′) 21 -19.92 -1703.459 -170.35 4 days, 17:00:00 0 / 0 / 21 / 0

TOTAL 926 0.18 526.595 52.66 1 day, 4:06:00 527 / 18 / 381 / 56.9

3.5.1 Summary Metrics

Metric Value
Backtesting from 2024-01-01 00:00:00
Backtesting to 2025-01-05 19:00:00
Trading Mode Isolated Futures
Max open trades 3
Total/Daily Avg Trades 926 / 2.5
Starting balance 1000 USDT
Final balance 1526.595 USDT
Absolute profit 526.595 USDT
Total profit % 52.66%
CAGR % 51.79%
Sortino 1.34
Sharpe 1.79
Calmar 7.11
Profit factor 1.18
Expectancy (Ratio) 0.57 (0.06)
Avg. daily profit % 0.14%
Avg. stake amount 387.094 USDT
Total trade volume 358448.908 USDT
Long / Short 925 / 1
Total profit Long % 52.25%
Total profit Short % 0.41%
Absolute profit Long 522.476 USDT
Absolute profit Short 4.119 USDT
Best Pair ADA/USDT:USDT 33.35%
Worst Pair SOL/USDT:USDT -5.67%
Best trade XRP/USDT:USDT 16.99%
Worst trade SOL/USDT:USDT -20.75%
Best day 129.324 USDT

st day -234.136 USDT

s win/draw/lose 144 / 129 / 98
Avg. Duration Winners 6:28:00
Avg. Duration Loser 2 days, 9:23:00
Max Consecutive Wins / Loss 15 / 8
Rejected Entry signals 23,693
Entry/Exit Timeouts 0 / 0

15

Min balance 916.774 USDT
Max balance 1,875.071 USDT
Max % of account underwater 38.24%
Absolute Drawdown (Account) 38.24%
Absolute Drawdown 567.734 USDT
Drawdown high 484.508 USDT
Drawdown low -83.226 USDT
Drawdown Start 2024-03-14 06:51:00
Drawdown End 2024-08-05 01:10:00
Market change 129.36%

Figure 4: A Plot of Some of the Trading Activity

3.6 Analysis and Conclusion

While our strategy achieved results significantly above the typical stock market
benchmark, the market of the selected crypto pairs increased by over double
our profit. This indicates that a simple buy-and-hold strategy would have been
more competitive than our trading bot. Therefore, we need to further refine our
bot to outperform the crypto market.

4 Code Appendix

References

[Aldridge(2013)] Irene Aldridge. High-frequency Trading: A
Practical Guide to Algorithmic Strategies and Trading Sys-
tems. Wiley, 2013. URL https://pdfroom.com/books/

16

https://pdfroom.com/books/high-frequency-trading-a-practical-guide-to-algorithmic-strategies-and-trading-systems/Vo75Xpwe5aG
https://pdfroom.com/books/high-frequency-trading-a-practical-guide-to-algorithmic-strategies-and-trading-systems/Vo75Xpwe5aG

high-frequency-trading-a-practical-guide-to-algorithmic-strategies-and-trading-systems/

Vo75Xpwe5aG.

[Avellaneda and Lee(2008)] Marco Avellaneda and Jeong-Hyun Lee. Statistical
arbitrage in the u.s. equities market. Quantitative Finance, 10(7):761–782,
2008. URL https://ssrn.com/abstract=1153505.

[Hasbrouck(2007)] Joel Hasbrouck. Empirical Market Microstructure: The In-
stitutions, Economics, and Econometrics of Securities Trading. Oxford Uni-
versity Press, 2007. URL https://www.forexfactory.com/attachment/

file/794018?d=1317095892.

[Jegadeesh and Titman(1993)] Narasimhan Jegadeesh and Sheridan Titman.
Returns to buying winners and selling losers: Implications for stock mar-
ket efficiency. The Journal of Finance, 48(1):65–91, 1993. URL https:

//doi.org/10.1111/j.1540-6261.1993.tb04702.x.

[Kirilenko et al.(2017)Kirilenko, Kyle, Samadi, and Tuzun] Andrei Kir-
ilenko, Albert S. Kyle, Mehrdad Samadi, and Tugkan Tuzun.
The flash crash: High-frequency trading in an electronic market.
The Review of Financial Studies, 30(11):2226–2256, 2017. URL
https://dx.doi.org/10.2139/ssrn.1686004.

[Kissell and Glantz(2003)] Robert Kissell and Morton Glantz.
Optimal Trading Strategies: Quantitative Approaches for
Managing Market Impact and Trading Risk. Amacom,
2003. URL https://www.scribd.com/document/748567351/

Robert-Kissell-Morton-Glantz-Optimal-Trading-Strategies-Quantitative-Approaches-for-Managing-Market-Impact-and-Trading-Risk-AMACOM-2003-1.

17

https://pdfroom.com/books/high-frequency-trading-a-practical-guide-to-algorithmic-strategies-and-trading-systems/Vo75Xpwe5aG
https://pdfroom.com/books/high-frequency-trading-a-practical-guide-to-algorithmic-strategies-and-trading-systems/Vo75Xpwe5aG
https://pdfroom.com/books/high-frequency-trading-a-practical-guide-to-algorithmic-strategies-and-trading-systems/Vo75Xpwe5aG
https://ssrn.com/abstract=1153505
https://www.forexfactory.com/attachment/file/794018?d=1317095892
https://www.forexfactory.com/attachment/file/794018?d=1317095892
https://doi.org/10.1111/j.1540-6261.1993.tb04702.x
https://doi.org/10.1111/j.1540-6261.1993.tb04702.x
https://dx.doi.org/10.2139/ssrn.1686004
https://www.scribd.com/document/748567351/Robert-Kissell-Morton-Glantz-Optimal-Trading-Strategies-Quantitative-Approaches-for-Managing-Market-Impact-and-Trading-Risk-AMACOM-2003-1
https://www.scribd.com/document/748567351/Robert-Kissell-Morton-Glantz-Optimal-Trading-Strategies-Quantitative-Approaches-for-Managing-Market-Impact-and-Trading-Risk-AMACOM-2003-1

	Project Introduction
	Historical Development
	Key Concepts in Algorithmic Trading
	Current Relevance and Adoption
	Existing Strategies and Limitations
	Mean Reversion Strategies
	Momentum and Trend-Following Strategies
	Arbitrage Strategies
	General Limitations of Algorithmic Trading Strategies

	The Problem
	Proposed Solution
	Objectives

	Getting Started
	Installation and Setup
	Creating the User Directory
	Creating a Configuration File

	Downloading Historical Data
	Creating and Evaluating a Strategy
	Optimizing the Strategy with Hyperopt
	Backtesting the Strategy
	Summary Metrics

	Analysis and Conclusion

	Code Appendix

